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A linear stability analysis of finite-amplitude periodic progressive gravity waves on
water of finite depth has extended existing results to steeper waves and shallower
water. Some new types of instability are found for shallow water. When the water
depth decreases, higher-order resonances lead to the dominant instabilities. In contrast
with the deep water case, we have found that in shallow water the dominant
instabilities are usually associated with resonant interactions between five, six, seven
and eight waves. For small steepness, dominant instabilities are quasi two-dimensional.
For moderate and large steepness, the dominant instabilities are three-dimensional
and phased-locked with the unperturbed nonlinear wave. At the margin of instability
diagrams, these results suggest the existence of new bifurcated three-dimensional
steady waves.

1. Introduction
This paper deals with the study of the stability of finite-amplitude two-dimensional

periodic gravity waves of permanent form in water of uniform depth with respect
to two- and three-dimensional infinitesimal disturbances. There have been extensive
studies on the stability of periodic waves in shallow water. Yet, for most of these
studies whether analytic or semi-numerical, the validity of their analysis is limited by
the assumption of weak nonlinearity of the travelling periodic waves.

Whitham (1965) applied the averaged variational approach to the Korteweg–
de Vries (KdV) equation and the Boussinesq equation, and found that periodic
cnoidal waves are stable to two-dimensional modulational disturbances. A stability
analysis for the Stokes wave was done by Infeld & Rowlands (1979) and Infeld
(1980), by using the Kamdomtsev–Pietvaschvili (KP) equation, a generalization of
the KdV equation, and different forms of the Boussinesq equation to account for
weak three-dimensional effects. Except for the KP equation for which periodic wave
are stable, these models yield dominant instabilities that are three-dimensional. The
obliqueness and the growth rate of these instabilities decrease with decreasing depth.
All these works consider periodic disturbances of wavelength much greater than the
fundamental wavelength of the Stokes wave, hence they include only modulational
perturbations. Besides, these results should be considered with care, because the
validity of the Stokes’ representation for shallow water is questionable. Nevertheless,
using Whitham’s theory, Infeld & Rowlands (1990) found that the cnoidal wave
solutions of the KP equation are stable to periodic three-dimensional long or
modulational perturbations.

A unified approach was developed by Bryant (1974, 1978), who used truncated
Euler equations to compute weakly nonlinear periodic progressive waves without
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restriction on kh, and also to study their stability to periodic two- and three-
dimensional disturbances of greater or equal wavelength. Bryant (1978) reported
three-dimensional instabilities associated with the lowest-order possible resonance
for gravity waves, namely the second-order quartet wave resonance between the
basic wave and the disturbances. No evidence was found for linear instability of
disturbances with wavelength equal to the fundamental wavelength, either in the case
of two-dimensional disturbances or in the three-dimensional case. However, in the
two-dimensional case, Bryant (1974) found that when the unperturbed waves are more
strongly nonlinear or when the disturbances have wavelength large compared with
the fundamental wavelength, the margin of stability of the disturbances decreases so
that the unperturbed waves were in practice only marginally stable.

Using the full exact equations, McLean (1982b) investigated the next-order
resonance, and introduced a classification of the corresponding instabilities according
to the number of waves associated with the corresponding resonant condition. The
class I and class II instabilities correspond, respectively, to an even and an odd
number of resonant waves. The second-order resonance corresponds to quartet-wave
interactions and belongs to class I. The third-order resonance corresponds to quintet-
wave interactions and belongs to class II. The third-order resonance was also analysed
by Stiassnie & Shemer (1984) who used the Zakharov integral equation up to fourth
order in the wave steepness. For non-dimensional depth kh � 0.365, their stability
results were in agreement with McLean’s results, although the instability region of
class I was found to consist of two disconnected domains. The authors suggested
that these differences might be a result of the perturbation expansions used in their
analytical studies. McLean (1982b) considered three depths, one greater and two
smaller than the bifurcation value kh = 1.363. For small amplitudes and all depths,
he found that the second-order resonance dominates. In the shallowest case, kh ≈ 0.5,
he investigated, the corresponding dominant instability is two-dimensional with a
wavelength comparable to the fundamental wavelength. For moderate steepness, the
dominant instability shifts to three-dimensional and is still associated with the second-
order resonance. For sufficiently steep waves, the third-order resonance dominates and
the most unstable disturbance is three-dimensional.

The major motivation of the present work is to extend the results of Bryant (1978),
McLean (1982b) and Stiassnie & Shemer (1984) to greater steepness and to shallower
water. The rest of the paper is organized as follows. In § 2, the governing equations
are presented for the description of the nonlinear wave and for the linear instability
analysis. The analysis proceeds along the lines of the finite-depth case treated by
McLean (1982b). The nonlinear wave is computed with the iterative method of
Longuet-Higgins (1988) and the eigenvalue system is generated using a Galerkin
method proposed by Zhang & Melville (1987) to study the stability of gravity–
capillary waves on deep water. In § 3, numerical results are presented for small and
large to moderate steepness. The discovered phased-locked stationary disturbances
associated with higher-order resonances suggest the existence of new steady three-
dimensional waves, which might bifurcate from the two-dimensional unperturbed
wave. The symmetry properties of the bifurcated surface patterns are examined. In
§ 4, conclusions are drawn.

2. Governing equations
The fluid is assumed to be inviscid and the motion irrotational, so the velocity u

may be expressed as the gradient of a potential φ: u = ∇φ. If the fluid is assumed to
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be incompressible, such that ∇ · u = 0, the equation that holds throughout the fluid is
Laplace’s equation

∇2φ = 0 for − h < z < η(x, y, t), (2.1)

where x and y are coordinates in the horizontal plane, and the z-axis is positive
upwards. The surface elevation is given by z = η(x, y, t) and the horizontal bottom
is located at z = −h. The bottom condition is

∂φ

∂z
= 0 on z = −h. (2.2)

The kinematic requirement that a particle on the free surface remains on it is expressed
by

∂η

∂t
+

∂φ

∂x

∂η

∂x
+

∂φ

∂y

∂η

∂y
− ∂φ

∂z
= 0 on z = η(x, y, t). (2.3)

The dynamic boundary condition can be written

∂φ

∂t
+ 1

2
(∇φ)2 + gη +

pa

ρ
= B(t) on z = η(x, y, t), (2.4)

where g is the acceleration due to gravity, pa the pressure at the free surface, ρ the
density of the fluid and B(t) is a function independent of spatial coordinates due to
the integration. This function constant can always be eliminated by redefining the
velocity potential by ∂Φ/∂t = ∂φ/∂t − B(t). Air motion is not taken into account and
the pressure at the free surface pa may be taken as equal to zero without loss of
generality. Surface tension effects are ignored.

The computations consist of two parts, calculation of the unperturbed wave
followed by a normal mode analysis of unsteady linear equations for the perturbations.
We normalize the equations by choosing k = 1, g = 1 and work with non-dimensional
variables. The normalized wavelength is λ = 2π.

2.1. Steady solutions

We consider two-dimensional gravity waves propagating steadily at the free surface.
In the frame of reference moving with the wave, the governing equations become

∇2φ = 0 for − h < z < η, (2.5)

∂φ

∂z
= 0 on z = −h, (2.6)

∂φ

∂x

∂η

∂x
− ∂φ

∂z
= 0 on z = η, (2.7)

1
2
(∇φ)2 + η = C on z = η, (2.8)

where C is a constant of the wave motion. Following Longuet-Higgins (1988), we
chose for computational convenience the origin of z at a level such that the right-hand
side of equation (2.8) is zero. This implies that the zero level is somewhat above the
wave crest.

Since the stability analysis requires highly accurate computation of the nonlinear
periodic waves (η, φ), we used the method developed by Longuet-Higgins (1988). At
the surface the streamfunction ψ = 0, and at the bottom ψ = Ψb. The free surface
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can be expressed in the form

η = 1
2
ao +

∞∑
n=1

an cos

(
nφ

c

)
, (2.9)

where c is the wave speed. Once the steepness and the undisturbed depth h = Ψb/c are
fixed, the unknown coefficients an are computed by the method of Longuet-Higgins
(1988). In the chosen reference frame, the undisturbed water depth h corresponds to
the depth of an uniform flow with the same momentum as the nonlinear wave. Then
the mean depth is given by

h = h + K, (2.10)

where the quantity K is given by

K = 1
2

∞∑
n=1

nγna
2
n, (2.11)

with

γo = 1, γn = cotanh
nΨb

c
, n = 1, 2, . . . .

In order to compute the coefficients an, one should truncate the Fourier series (2.9) at
a given order N , and fix a value for the undisturbed depth h and the wave steepness

ak = a1 + a3 + a5 + · · · + aN. (2.12)

By using the free-surface conditions as formulated by Longuet-Higgins (1988), we
obtain a system of N nonlinear algebraic equations which can easily be solved
iteratively by Newton’s method. The determination of the potential and its derivatives
is a separate problem. The potential at the free surface is computed by solving
iteratively the following equation

x = −φ

c
−

N∑
n=1

anγn sin

(
nφ

c

)
, (2.13)

and its derivatives are computed with the Cauchy–Riemman relations.

2.2. Stability of the steady solutions

We consider basic steady solutions with wavenumber k = 1. For the linear stability
analysis, the reference frame is again one moving at the speed of the wave, but one
in which the mean level of the nonlinear wave is zero and the bottom is located
at z = −h. In this reference frame, we study the stability of finite-amplitude waves
subject to infinitesimal three-dimensional disturbances and let

η(x, y, t) = η(x) + η′(x, y, t), (2.14)

φ(x, y, z, t) = φ(x, z) + φ′(x, y, z, t), (2.15)

where (η, φ) and (η′, φ′) correspond, respectively, to the unperturbed wave and the
infinitesimal disturbances (|η′|�|η|, |φ′|�|φ|). We substitute (2.14) and (2.15) into
(2.7) and (2.8). Linearization of the equations about z = η yields linear evolution
equations for the disturbances

∂η′

∂t
+

∂φ

∂x

∂η′

∂x
+

∂η

∂x

∂φ′

∂x
+

(
∂2φ

∂x∂z

∂η

∂x
− ∂2φ

∂z2

)
η′ − ∂φ′

∂z
= 0, (2.16)
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∂φ′

∂t
+ η′ +

∂φ

∂x

∂φ′

∂x
+

∂φ

∂z

∂φ′

∂z
+

(
∂2φ

∂x∂z

∂φ

∂x
+

∂2φ

∂z2

∂φ

∂z

)
η′ = 0, (2.17)

which are to be satisfied on the unperturbed free surface z = η. Furthermore the
potential φ′ satisfies the Laplace equation on the domain defined by −h < z < η and
the bottom condition ∂φ′/∂z =0 at z = − h.

Non-trivial solutions of the linearized problem corresponding to equations (2.16)
and (2.17) are sought in the form

η′ = e−iσ tei(px+qy)

∞∑
−∞

aje
ijx, (2.18)

φ′ = e−iσ tei(px+qy)

∞∑
−∞

bj

ch(kj (z + h))

ch(kjh)
eijx, (2.19)

where kj =
√

(p + j )2 + q2 corresponds to the modulus of the wave vector kj =
(p + j, q)t . Expressions (2.18) and (2.19) have the form of a periodic function of x,
with the same wavelength as the undisturbed wave, multiplied by a periodic function
of x with wavelength 2π/p, a periodic function of the transverse coordinate y with
transverse wavelength 2π/q , and an exponential function of time. The numbers p and
q are arbitrary real numbers.

Substitution of (2.18) and (2.19) into the linearized equations (2.16) and (2.17) yields
a generalized eigenvalue problem for σ which, after truncation at M Fourier modes,
can be written in the general form

Au = σBu, (2.20)

where u = (a−M . . . aM, b−M . . . bM )t represents the corresponding eigenvector. The
matrices A and B are complex functions of p, q , as well as mean depth h and wave
steepness ak of the unperturbed wave. Thus σn are the unknown discrete eigenvalues
to be determined, and (anj , bnj )

t their associated eigenvector, for n in (−M, M) and j

in (−M, M). Because the water-wave system has an underlying Hamiltonian structure,
eigenvalues must appear as either pure real or complex-conjugate pairs. Instability
corresponds to Im (σn) > 0 for at least one mode n, given the values of p and q .

The spectrum is easy to compute when ak = 0 (flat surface). Then the mean depth
h is equal to the undisturbed depth h since K = 0, and all the eigenvalues are real

σ ±
n = −c0(p + n) ± [kntanh(knh)]1/2, (2.21)

where c0 =
√

tanh(h) and kn =
√

(p + n)2 + q2. They represent progressive waves

(marginally stable disturbances) propagating on a uniform flow with potential φ =
−c0x. The sign ± gives the direction of propagation of the perturbation relative to
the unperturbed wave. To investigate the effect of finite-amplitude on this set of
eigenvalues, MacKay & Saffman (1986) used a powerful theorem on the stability of
equilibria of Hamiltonian systems. This theorem states that the unperturbed wave
can lose spectral stability with finite-amplitude effects, if two simple eigenvalues
coalesce with opposite signature or at zero frequency. The signature is defined as
sign [±Im(−iσ ±)]. In fact for pure gravity waves, degenerate eigenvalues with opposite
signatures exist for ak = 0. Thus small nonlinear effects are expected to produce bands
of instability in the neighbourhood of the loci of collisions of the eigenvalues. The
loci of collisions define two families of curves in the (p, q)-plane: class I when the
collisions occur between modes with σ+

m = σ −
−m, and class II when the collisions occur
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between modes with σ+
m = σ −

−m−1. The corresponding instabilities are called class I and
class II instabilities with the integer m � 1. The linear resonance conditions, namely
when ak = 0, are for class I,√

kmtanh(kmh) +
√

k−mtanh(k−mh) = 2mc0, (2.22)

and for class II, √
kmtanh(kmh) +

√
k−m−1tanh(k−m−1h) = (2m + 1)c0. (2.23)

These relations can also be written in the fixed frame of reference,

nk0 = k1 + k2, (2.24)

nω0 = ω1 + ω2, (2.25)

where n= 2, 3, . . . represents the order of resonance and also the number of
harmonics of the unperturbed wave with fundamental wavenumber k0 = (1, 0)
that is in resonance with the two perturbations having wavenumbers k1 and k2.
Here ωi =

√
| ki | tanh(| ki | h) is the linear dispersion relation for gravity waves.

Thus n= 2 corresponds to quartet resonant interactions, with k1 = (1 + p, q)t and
k2 = (1 − p, −q)t . Next, n= 3 corresponds to quintet resonant interactions, with
k1 = (1 + p, q)t and k2 = (2 − p, −q)t . The eigenvalues σ are computed by using an
eigenvalue solver based on a ‘QZ’ algorithm. For details of the numerical aspects of
the method, see McLean (1982b) and Zhang & Melville (1987).

3. Numerical results
The stability of finite-amplitude periodic gravity waves was studied for various

values of steepness and depth h < π/4. Following the work of Fenton (1979), we
choose to refer to shallow water waves when kh < π/4. Fenton (1979) obtained fifth-
order and ninth-order cnoidal wave solutions, and compared these high-order cnoidal
wave solutions with the fifth-order Stokes wave solutions and the exact numerical
results of Cokelet (1977). From this analysis, he found that a boundary of applicability
between deep- and shallow-water theories could be drawn near λ/h ≈ 8 or kh ≈ π/4.

First, we consider the stability of small-amplitude waves in shallow-water, and
adopt the approach of Bryant (1978) by considering the effects of decreasing depth
for a fixed value of the shallow water parameter a/h. Then, in § 3.2, we analyse
in detail the stability of strongly nonlinear waves for the two cases h = 0.5 and
h =0.3. We have re-examined the case h = 0.5, since we have found the results of
McLean (1982b) incomplete for moderate to large steepness. The maximum growth
rates of the instabilities associated with the resonances n= 2, 3, 4, 5, 6 and 7 are
analysed for a large range of values of the steepness ak. Finally, in § 3.3, we discuss
the implications of the discovered disturbances that are stationary relative to the
unperturbed wave and are associated with the n= 4, 5, 6, 7 resonances. Indeed, this
suggests the occurrence of bifurcations from the two-dimensional unperturbed wave
into steady three-dimensional waves. The symmetry properties of these probable
bifurcated waves are briefly discussed.

A discussion on the accuracy of the numerical results and efficiency of the method
is presented in the Appendix.†

† This appendix is available as a supplement to the online version of the paper, or from the
Journal of Fluid Mechanics Editorial Office.
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kh ak c2 h (a/h)/(kh)2

0.50 0.0250 0.46814690 0.50065899 0.20
0.30 0.0150 0.29930575 0.30035132 0.55
0.25 0.0125 0.25336472 0.25027500 0.80
0.10 0.0050 0.10639908 0.10006225 5.00

Table 1. Characteristics of the unperturbed waves with a/h = 0.05.
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Figure 1. One wavelength profile for four values of h(εs =0.05). h = 0.5 (· · ·); h =0.3 (—);
h = 0.25 (—·—); h =0.1 (—).

3.1. Finite-depth effects for small nonlinearity

To our knowledge, there exist few results on the stability of cnoidal-like waves.
Here, cnoidal-like waves refer to fairly long periodic surface waves on water of
uniform depth, such as the cnoidal solution of the KdV equation or the Boussinesq
equation that are examples of first-order approximations to periodic travelling waves
in shallow water. Using Whitham’s theory, Infeld & Rowlands (1990) found that the
cnoidal wave solutions of the KP equation are stable to periodic three-dimensional
long or modulational perturbations. Using a truncated form of the Euler equations,
Bryant (1974, 1978) studied the stability of nonlinear periodic waves, subject to
periodic two- and three-dimensional disturbances of greater or equal wavelength.
He found stability for two-dimensional disturbances and instability for certain three-
dimensional disturbances. No evidence was found for linear instability of disturbances
with wavelength equal to the fundamental wavelength.

Following the idea of Bryant (1978), we analysed the stability of waves with a fixed
shallow-water amplitude a/h= 0.05 and decreasing value of the undisturbed depth h.
Equivalently, decreasing value of h may be interpreted as an increase in wavelength
of the unperturbed wave. In Bryant’s analysis, shallow-water scalings are used and
the two parameters describing the nonlinear wave are the nonlinear shallow-water
parameter a/h and the non-dimensional depth µ = kh with k = 1. In our numerical
study, we chose to use the same scaling as McLean (1982b) and consider the steepness
ak = µ a/h as the varying nonlinear parameter, the non-imensional undisturbed depth
being µ = kh. Thus, our results scale as Im (σ ) = ak

√
kh Im (σB), where the index B

refers to Bryant’s scalings. We have studied four waves whose properties are given
in table 1. It is well known that weakly nonlinear permanent shallow-water waves
are possible if a/h ∼ (kh)2, when amplitude and frequency dispersion effects are in
balance. Figure 1 shows the corresponding wave profiles. Bryant’s results concern
mainly the cases h = 0.5 and h = 0.25.
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Figure 2. Primary region of class I (n= 2) instability for a/h = 0.05 and h = 0.5. The
boundaries are given by the solid lines and the dotted line is the curve of linear resonance.
Bryant’s results are shown by dashed lines.
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Figure 3. Diagram of instability for a/h = 0.05 and h = 0.5. Unstable regions for the
resonances n= 2, 3, 4. The dots label the most unstable modes of each region of instabilities.
The dotted lines represent the resonance curves.

For h = 0.5, figure 2 shows the class I (n= 2) instability region (shaded zone) in

the (κ-θ)-plane with κ =
√

p2 + q2 and θ = a tan (q/p). The present results are shown
by solid lines while Bryant’s results are dashed lines. The region of instability is
thinner than predicted by Bryant, the upper boundary being in closer agreement
with the present numerical results than the lower boundary. Besides, the region of
instability computed by Bryant does not extend beyond a certain wavenumber with
modulus κ ≈ 0.523, which corresponds to an oblique disturbance with θ ≈ 0.125π. Our
numerical results show that class I (n= 2) instabilities exist for greater values of κ ,
but for less oblique disturbances. In particular, in the (p, q)-plane, two-dimensional
instabilities exist for a very thin region 1.1119 < p < 1.1133 (q = 0). The most unstable
two-dimensional disturbance has a growth rate comparable with that of the most
unstable three-dimensional disturbance, which is located near (p, q) = (1.112, 0.015)
(see figure 3). In fact, the class I (n= 2) instability region presents two local maxima
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Class I (n = 2) Class II (n = 3)

h ak p q Re σ Im σ p q Re σ Im σ

0.50 0.0250 1.1126 0 −0.157 3.57 × 10−4 0.5 0.504 0 1.62 × 10−4

0.30 0.0150 1.0558 0 −0.061 1.95 × 10−4 2.1859 0.0182 −0.203 1.75 × 10−4

0.25 0.0125 1.0457 0.0079 −0.046 1.49 × 10−4 2.144 0.0151 −0.145 1.74 × 10−4

0.10 0.0050 1.029 0 −0.018 0.33 × 10−4 2.0176 0.016 −0.042 0.63 × 10−4

Table 2. Maximum growth rate for resonances n= 2, 3. The unperturbed waves have the
same value a/h =0.05 for various depths.

Class I (n = 4) Class II (n = 5)

h ak p q Re σ Im σ p q Re σ Im σ

0.50 0.0250 0 1.102 0 0.54 × 10−4 — — — —
0.30 0.0150 0 0.677 0 0.83 × 10−4 — — — —
0.25 0.0125 2.3203 0.0195 −0.321 1.18 × 10−4 — — — —
0.10 0.0050 2.113 0.0258 −0.074 0.86 × 10−4 3.183 0.0107 −0.117 1.00 × 10−4

Table 3. Maximum growth rate for resonances n= 4, 5. The unperturbed waves have the
same value a/h =0.05 for various depths.

for the growth rate. Between the two regions, the growth rate is very small and
the band reduces practically to a line of infinitesimal thickness. Thus, only one local
maximum growth rate was found by Bryant (1978) for an unstable oblique disturbance
with κ ≈ 0.3. With the shallow-water scalings, Bryant (1978) reported that the most
unstable disturbance has Im (σB) = 2.65 × 10−3. In our study, a local maximum
growth rate is found in the same region, but for an unstable mode with κ = 0.22
near (p, q) ≈ (0.2, 0.092) and with Im (σB) = 2.99 × 10−3. However, the most unstable
disturbance of class I (n= 2) is not oblique, but almost parallel to the basic wave. The
growth rate of this disturbance near (p, q) = (1.112, 0.015) is Im (σB) = 1.01×10−2, or
with our scalings Im (σ ) = 3.57 × 10−4. The present differences with Bryant’s analysis
can be explained, because he used a truncated form of the equations of motion both
for the computation of the nonlinear wave and for the linear stability analysis. It is
well-known that the latter problem is very sensitive to the accuracy of the nonlinear
wave computations. We use the full exact equations of motion and linearize the
perturbations about the nonlinear unperturbed wave and not about the flat surface
as Bryant (1974, 1978).

Figure 3 shows the bands of instability associated with the resonances n= 2, 3, 4
for the same depth. All the bands of instability are located in the vicinity of their
corresponding linear resonance curves. For class II (n= 3), all instabilities on the axis
p = 1/2 are phase-locked [Re(σ ) = 0] with the unperturbed wave. For class I (n= 4),
all instabilities on the axis p =0 are also phase-locked with the unperturbed wave.
The most unstable mode of the class II (n= 3) is located on the axis p = 1/2, while
for the class I (n= 4) it is on the axis p = 0. The characteristics of the most unstable
disturbance of each resonance are reported in tables 2 and 3.

Both bands of class II (n= 3) and class I (n= 4) instabilities consist of two
domains bound by an infinitesimal band with extremely small growth rates. Following
Stiassnie & Shemer (1984), the first region associated with low values of p will
be referred to as the primary region of instability, and the other associated with
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Figure 4. As figure 3, but for h =0.3.

large values of p as the secondary region of instability. These authors observed
disconnections between the two domains of class I (n= 2) instabilities and, sometimes,
disappearance of the secondary region. Since these features were not observed in
McLean (1982b) who used the full equations, they speculated that it could result
from the errors introduced by their perturbation approach. Besides, Stiassnie &
Shemer (1984) have found that the secondary region of instability of the class I
(n= 2) could have greater growth rates than the corresponding primary region for
0.37 � h � 0.85. This occurs for small to moderate amplitude, and is in agreement with
McLean’s result for h = 0.5. Namely, the most unstable disturbance for class I (n= 2)
is located in the secondary region for ak = 0.10 and is quasi-two-dimensional. For
all the cases we have considered, except for h = 0.1 and n= 2, our numerical results
indicate that there always exist a primary and secondary region for each resonance.
However, we have never observed disconnections between the two domains of one
particular band of instability.

Figure 4 shows the regions of unstable disturbance for the second permanent
wave with a/h= 0.05 and h = 0.3. For this wave, the dominant instability is still
associated with the second-order resonance, i.e. class I (n= 2), and is two-dimensional.
Nevertheless, the main difference from the first wave concerns the instabilities
associated with resonances n= 3, 4. Indeed, the instabilities located in the secondary
region of class II (n= 3) have greater local growth rates than those of the instabilities,
which are located in the primary region. On the other hand, the local maximum
growth rate in the primary region is still located on the axis p = 1/2 and phase-
locked to the unperturbed wave, while that of the secondary region is located near
(p, q) = (2.185, 0) which corresponds to a two-dimensional disturbance. Similarly, for
class I (n= 4), the corresponding region of instabilities also consists of two domains,
yet with comparable local maximum growth rates. The most unstable mode of the
primary region is located on the axis p = 0 and phase-locked to the unperturbed wave,
with Im (σ ) = 0.8301×10−4 or with Bryant’s scalings Im (σB) = 3.00×10−3. The second
local maximum growth rate is in the secondary region, near (p, q) = (2.417, 0.018),
and has a slightly greater value, i.e. Im (σ ) = 0.8408 × 10−4 or Im (σB) = 3.01 × 10−3.
The characteristics of the dominant instabilities are given in tables 2 and 3.

For the third wave a/h= 0.05 and h = 0.25, figure 5 shows that the most
unstable modes of each resonance are in the corresponding secondary regions, and
represent quasi-two-dimensional instabilities. In this case, the dominant unstable
mode corresponds to a class II (n= 3) instability; see tables 2 and 3. We note that
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Figure 5. As figure 3, but for h =0.25.
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Figure 6. Diagram of instability for a/h = 0.05 and h =0.1. Unstable regions for the
resonances n= 2, 3, 4, 5. The dots label the most unstable modes of each region of instabilities.
The dotted lines represent the resonance curves and the dashed-dotted lines the nonlinear
resonance curves.

the maximum growth rate of the class I (n= 4) instabilities is greater than that of the
class I (n= 2) instabilities. In the primary region of instability associated with the reso-
nances n= 3, 4, the most unstable perturbations are all phase-locked with the
unperturbed wave. These instabilities are located on the axis p = 1/2 for class II
(n= 3) and on the axis p = 0 for class I (n= 4). They represent unstable three-
dimensional disturbances. Yet, their growth rate is lower than that of the instabilities
in the secondary region.

For the fourth wave a/h= 0.05 and h = 0.1, the most unstable perturbations
are two-dimensional or quasi-two-dimensional as shown in figure 6. The dominant
unstable mode corresponds to a class II (n= 5) instability. Similarly, most unstable
disturbances in the primary region are all phase-locked with the unperturbed wave.
For class II (n= 3, 5), these are located on the axis p =1/2, and on the axis p = 0 for
class I (n= 4). Bryant (1978) has commented briefly on this case. He found oblique
instabilities only in the primary region of class I (n= 2) instabilities with smaller
growth rates than in the cases h = 0.5 and h =0.25. Our numerical results indicate that
there is only one local maximum growth rate for the class I (n= 2) instabilities located
in the secondary region where p > 1 and q � 1. The most unstable disturbance is
quasi-two-dimensional with (p, q) = (1.0457, 0.0079) and Im (σB) = 2.11×10−2. In the
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primary region, the growth rates are consistent with Bryant’s results, i.e. a decrease of
the growth rates with decreasing depth, although there is no longer local maximum
growth rate in this region.

We note that in the two previous cases, the instability bands for all resonances move
further from their corresponding resonance curve as the depth decreases. Formally,
the resonance curves are still applicable for finding the unstable regions, but for an
infinitesimal amplitude of the basic wave with frequency given by the linear dispersion
relation, c0 =

√
tanh(h). They are useful in very shallow water if ak � (kh)3 holds, in

accordance with the Stokes’ expansions approach. For a/h < 0.05, we have found that
the bands of instabilities are extremely thin and the growth rates extremely small.
For a/h > 0.05 and h � 0.3, we have found it practical to replace c0 by c, the speed
of the basic wave, in the linear resonance conditions (2.22)–(2.23), in order to locate
the secondary region of instabilities of class I,√

kmtanh(kmh) +
√

k−mtanh(k−mh) = 2mc, (3.1)

and of class II, √
kmtanh(kmh) +

√
k−m−1tanh(k−m−1h) = (2m + 1)c. (3.2)

Figure 6 illustrates how the secondary region of instabilities develops around the
nonlinear resonance curves (3.1)–(3.2) where q � 1. However, it is important to notice
that these nonlinear resonance curves move in the (p, q)-plane as the amplitude
of the basic wave varies. Moreover, their use is limited to quasi-two-dimensional
disturbances. This is important since we have found that the dominant instabilities
are quasi-two-dimensional when the depth decreases.

For the shallow-water cases h � 0.3, we have found that the first-order cnoidal
approximation is practical for estimating the amplitude correction of the phase speed.
The KdV cnoidal wave theory predicts in dimensional form

cKdV =
√

gh

[
1 − a

h
+

1

m

2a

h

(
1 − 3E(m)

2K(m)

)]
, (3.3)

in terms of the elliptic parameter m, where K(m) and E(m) are, respectively, the
complete elliptic integrals of the first and second kind. Using cKdV , after normalization,
instead of the exact value c, produces the same nonlinear resonance curves. However,
this theory is valid when a/h � 1 with a/h ∼ (kh)2. For large values of the parameter
(a/h)/(kh)2, the KdV model diverges from the exact phase velocity c, because it
underestimates the amplitudes of the higher harmonics of the basic wave when
(a/h)/(kh)2 increases, as explained in Bryant (1974).

In summary, we have found that when the depth decreases, for a fixed shallow-water
amplitude a/h= 0.05, the dominant instabilities corresponding to the resonances
n=2, 3, 4 and 5 become quasi-two-dimensional and are shifted in the secondary
region. The results concerning the resonances n= 2, 3 are consistent with previous
weakly nonlinear predictions of Bryant (1978), McLean (1982b) and Stiassnie &
Shemer (1984). Higher-order resonances dominate in the two shallowest cases we
have studied. The order of the resonance associated with the maximum growth rate
of all instabilities is found to increase with decreasing depth. Comparison of the
growth rates for the various instabilities is given in tables 2 and 3.

3.2. Results for moderate- and large-amplitude waves

The case h = 0.5 has already been investigated by McLean (1982b) for different
values of the steepness. In his work, the wave steepness ranges from small amplitude
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Figure 7. Maximum growth rate of class I and class II instabilities for h =0.5 as a function
of wave steepness. · · ·, class I (n= 2); - - -, class II (n=3); —, class I (n= 4); –·–, class II
(n= 5); —x—, class I (n= 6).

up to ak = 0.160 which is roughly 85 % of the maximum wave steepness equal to
0.188 (see Cokelet 1977). The results concern the instabilities associated with class I
(n= 2) and class II (n= 3). He found that the instabilities of class I are essentially
three-dimensional. The main discovery for this class is that, for small steepness the
most unstable mode is two-dimensional with a wavelength comparable with that of
the basic nonlinear wave; for higher steepness it becomes three-dimensional. More
importantly, two-dimensional long-wavelength perturbations are found to be stable
for this depth and for the range of steepness considered. Finally, McLean (1982b)
reported that the behaviour of class II instabilities was analogous to the deep-water
case, as well as to the finite-depth case, that is, they are essentially three-dimensional
and dominate the class I instabilities for sufficiently large steepness. We extended the
computations to higher steepness, and found that the results of McLean (1982b) are
incomplete, even for steepness lower than ak = 0.160.

For ak � 0.112, the dominant instabilities belong to the lowest-order resonance of
the class II (n= 3). The most unstable mode is three-dimensional occurring at p = 1/2
and q 	=0, and is phase-locked to the unperturbed nonlinear wave [Re (σ ) = 0]. For
ak � 0.112, we found that the instabilities associated with the next-order resonance
of class I (n= 4) are always dominant, as far as the most unstable mode is of interest.
The most unstable mode is always a three-dimensional perturbation and occurs on
the q-axis (p = 0). Thus by definition, it is a three-dimensional perturbation with the
same longitudinal periodicity as the unperturbed wave (in the x-direction). This was
not observed by McLean (1982b) who restricted his analysis to class I (n= 2) and
class II (n= 3), the lowest-order resonances.

For higher steepness, the maximum growth rates of the higher-order resonances
(n= 5, 6) also become important, although lower than that of class I (n= 4). This is
shown in figure 7. Meanwhile, the corresponding instability regions grow in the wave
vector space of the perturbation, as shown in figures 8 and 9. The most unstable mode
of class II (n= 5) is three-dimensional, occurring at p = 1/2 and q 	=0, and is also
phase-locked to the unperturbed wave. As for class I (n= 4), the most unstable mode
of class I (n= 6) is located on the q-axis and is also phase-locked to the unperturbed
wave. Besides the shifting from two-dimensional to three-dimensional of the most
unstable mode of class I (n= 2), the most unstable mode of each resonance shifts
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Figure 8. Instability regions of class I and class II for ak = 0.160 and h = 0.5. The dashed-
dotted lines represent the resonance curves. The dots label the most unstable modes of each
region of instabilities.
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Figure 9. As figure 8, but for ak =0.170.

towards its corresponding linear resonance curve as the steepness becomes very large
(see figure 9).

For the case with h = 0.3, the maximum wave steepness is equal to 0.118. The
computations show that from small to moderate steepness, the maximum growth
rates of the instabilities associated with the resonances n= 3, 4, 5 and 6 are close to
each other (see figures 10 and 11). For 0.25 <ak < 0.061, the dominant instability is
three-dimensional and of class I (n= 4). Note that for ak = 0.050, the most unstable
mode of class I (n= 2) is two-dimensional, as shown in figure 12. For this class, we have
found that the shift from two-dimensional to three-dimensional of the most unstable
disturbance occurs between ak =0.080 and ak = 0.090. For 0.061 <ak < 0.095, the
dominant instability is still three-dimensional, but is associated with the next-order
resonance, class II (n= 5). It is located on the axis p = 1/2. Figure 11 shows that
as the steepness of the basic wave increases, when ak > 0.095, the most unstable
mode of class I (n= 6) instabilities becomes dominant. This mode is located on the
axis p = 0. In fact, the growth rates of the instabilities associated with the high-order
resonances n= 5, 6 and 7 are greater than those of the resonances n= 2, 3 and 4 when
ak > 0.090. For very high steepness, we see that instabilities of class I (n= 6) should
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Figure 10. Maximum growth rate of class I and class II instabilities for h = 0.3 as a function
of wave steepness. · · ·, class I (n= 2); - - -, class II (n=3); —, class I (n= 4); –·–, class II
(n= 5); —x—. class I (n= 6); —o—, class II (n= 7).
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Figure 11. As figure 10 but for larger values of the wave steepness.
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Figure 12. Instability regions of class I and class II for ak = 0.050 and h = 0.3. The dashed-
dotted lines represent the resonance curves. The dots label the most unstable modes of each
region of instabilities.
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Figure 13. As figure 12, but for ak = 0.100.

be the dominant instabilities. For ak = 0.100, the dominant instability, namely that of
class I (n= 6), corresponds to disturbances with the same longitudinal periodicity as
shown in figure 13. Hence, 8-wave interactions are dominant for such large steepness.

3.3. Three-dimensional stationary disturbances

In this subsection, we consider marginally stable disturbances (σ = 0) of the nonlinear
periodic progressive waves associated with instabilities of class I (n= 4, 6) and
class II (n= 3, 5, 7). In fact, it is well known that for gravity waves in deep
water, the most unstable disturbances of class II (n= 3), which are located on
the axis p = 1/2 and phase-locked to the unperturbed wave, lead when dominant
for ak > 0.3 to the formation of three-dimensional waves of permanent form
with surface patterns symmetric about the direction of propagation. These waves
were observed experimentally by Su et al. (1982), and their characteristics were in
agreement with numerical bifurcation predictions obtained with the exact equations by
Meiron, Saffman & Yuen (1982). For small steepness and very oblique modulational
perturbations, the bifurcation predictions also agree with similar predictions obtained
by Saffman & Yuen (1980) who used the Zakharov equation. The latter authors
have demonstrated that there exist an infinity of loci (p, q) representing stationary
oblique disturbances, which can bifurcate into two branches of new solutions either
symmetric about the direction of propagation or skewed. Yet, the skew solutions have
never been calculated, within the exact equations, and the selection mechanism for its
occurrence remains an open question. In this subsection, attention is drawn to steady
three-dimensional patterns obtained by superposing a marginally stable stationary
disturbance on the basic wave.

For a given undisturbed depth kh and steepness ak, there exists an infinity of
marginally stable modes for each class of instabilities (n> 2). As discussed by
Saffman & Yuen (1985), bifurcations can occur when a marginally stable disturbance
can be superposed on a steady wave. For a given value of the wave steepness, this is
possible on an infinite number of loci in the (p, q)-plane (see dashed lines on figure 2
of McLean 1982a).

We have shown that the dominant instabilities are three-dimensional for moderate
to large steepness as the water depth decreases. They are located on the axis p = 0 for
class I and on the axis p = 1/2 for class II. Thus, we focus on the marginally stable
disturbances which are located at the boundaries of the corresponding unstable region
for p = 0 or p =1/2. This suggests for each class of instability the existence of two



Three-dimensional instabilities of periodic gravity waves in shallow water 433

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6
x/λ x/λ

0.8 1.0

0.2

0.4

0.6

0.8

1.0

q y
2π

–0.1

0

0.1

0.2

0.3

η

h

(a)

–––

––

0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

–0.1

0

0.1

0.2

0.3

(b)

Figure 14. The unperturbed wave corresponds to h = 0.5 and ak = 0.100. Top:
Surface-contour plot of bifurcated gravity wave; bottom: cuts through the corresponding
surface at: —, y = 0; —·—, y = π/2q; . . . , y = π/q . (a) q = 1.205 (p = 0, lower intersection);
(b) q = 1.277 (p = 0, upper intersection).

types of three-dimensional wave symmetric about their direction of propagation. In
the following sections, we consider symmetric three-dimensional waves by superposing
on the undisturbed nonlinear wave the computed three-dimensional marginally stable
mode associated with the dominant class of instability. These three-dimensional waves
will be referred to as bifurcated waves, although it should be more rigorous to use a
bifurcation technique to calculate the different bifurcated solutions. The eigenfunctions
(2.18) and (2.19) are normalized so that the maximum crest-to-trough height of the
disturbance is 0.3 times the crest-to-trough height of the undisturbed nonlinear wave.

3.3.1. Stationary disturbances of class I (n= 4, 6)

It has been found that all instabilities of class I (n= 4, 6) have eigenvalues with
zero real part on the axis p =0. Thus, the stationary modes of class I (n= 4, 6) at
the boundary of the unstable region with p = 0 may lead to three-dimensional waves
that are doubly periodic in two orthogonal directions. The longitudinal wavelength
of these disturbances is the same as that of the undisturbed wave and the transverse
wavelength is equal to 2π/q . They can be considered as a type of spontaneous
short-crested waves arising as superharmonic bifurcations from the undisturbed two-
dimensional wave.

We consider a wave steepness ak = 0.1 to illustrate the bifurcated wave from
stationary perturbations of class I (n= 4) in the case h = 0.5, although these modes
are not associated with the dominant instabilities. Indeed, we have found that the most
unstable mode of class II (n= 3) is the dominant instability with Im (σ ) = 8.77 × 10−3.
The growth rate of the most unstable mode of class I (n= 4) is Im (σ ) = 8.12 × 10−3,
which is rather close to the dominant growth rate of that of class II (n= 3). However,
we take the stationary modes of class I (n= 4), with p = 0, mainly for qualitative
information about the bifurcated surface patterns. Figures 14(a) and 14(b) show the
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Figure 15. As figure 14, but for h = 0.3; (a) q = 2.119, (b) q = 2.485.

surface-contour plot and cuts at y = 0, π/2q, yπ/q corresponding to the bifurcations
from stationary disturbances at the boundary of the unstable region of class I (n= 4),
respectively, for the lower (q = 1.205) and the upper (q = 1.277) intersections with the
axis p = 0. For h = 0.3 and ak =0.100, the instabilities of class I (n= 6) are dominant.
Figures 15(a) and 15(b) characterize the bifurcated waves corresponding, respectively,
to the stationary modes of class I (n= 6) at the lower intersection (q =2.119) and at
the upper intersection (q = 2.485).

From the examination of the wave patterns, we can see that all these waves are
symmetric about the direction of propagation of the basic wave. However, three-
dimensional waves considered for the lower intersections have one more axis of
symmetry which is perpendicular to the first one. Besides, this axis of symmetry
can be invariantly considered at the crest (x = 0) or at the trough (x = π) of the
bifurcated waves. These symmetries are lost for bifurcated waves considered for
the upper intersection. These waves remain only symmetric about their direction of
propagation.

3.3.2. Stationary disturbances of class II (n= 5, 7)

It has been found that all instabilities of class II (n= 5, 7) have eigenvalues with
zero real part on the axis p = 1/2. The bifurcated waves correspond to subharmonic
bifurcations, which have a longitudinal wavelength equal to twice that of the two-
dimensional unperturbed wave. These waves are doubly periodic in the two orthogonal
directions. Their transverse wavelength is equal to 2π/q .

For h = 0.3 and ak = 0.08, the instabilities of class II (n= 5) are dominant.
Figures 16(a) and 16(b) characterize the bifurcated waves corresponding to the
stationary modes of class II (n= 5), respectively, at the lower intersection (q = 1.491)
and at the upper intersection (q = 1.640) between the boundary region and the axis
p = 1/2. These surface patterns have similar characteristics to that of the symmetric
three-dimensional bifurcations of Stokes waves in deep water, although a richer
transverse structure characterizes the presented higher-order bifurcations of class II
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Figure 16. As figure 14, but for h = 0.3, ak = 0.080; (a) q = 1.491 (p = 1/2, lower
intersection), (b) q = 1.640 (p = 1/2, upper intersection).

(n= 5, 7). From the lower intersections, the symmetric bifurcated waves have one
more axis of symmetry, which passes through the crest and is perpendicular to
the direction of propagation. In deep water, these waves are referred to as crest-
symmetric three-dimensional waves. They arise from the lower stationary mode of
class II (n= 3) instabilities with p = 1/2. The bifurcated waves that arise from the
upper stationary modes are referred to as trough-symmetric three-dimensional waves,
since the secondary axis of symmetry passes through the trough (x =2π) of the
bifurcated wave with period doubling. Thus, the secondary symmetry is not lost for
these stationary modes. Similar properties are observed for the presented bifurcated
waves from stationary modes of class II (n= 5, 7).

4. Conclusion and discussion
A study of three-dimensional instabilities of two-dimensional periodic gravity

waves in shallow water has been presented. The stability analysis has extended and
supplemented work by Bryant (1974, 1978), Stiassnie & Shemer (1984) and McLean
(1982b) to shallower water depths and steeper basic waves.

For dimensionless depths h < 0.5, weakly nonlinear two-dimensional water waves
are found to be most unstable to two-dimensional or quasi-two-dimensional
disturbances. The maximum growth rate of each class is found in the secondary
region of instability with p > 1, in the (p, q)-plane. For h = 0.5, the maximum growth
rates correspond to three-dimensional instabilities in the primary region except for
the class I (n= 2) whose dominant instabilities are two-dimensional or quasi-two-
dimensional in the secondary region of instability, close to p = 1. The case restricted
to four-wave interactions, was investigated by Bryant who found the most unstable
infinitesimal perturbation to be oblique, i.e. fully three-dimensional. This is because
he limited his study to small values of the perturbation wavenumber. Comparing
numerically the nonlinear evolutions of the most unstable perturbation and linearly
stable perturbations parallel to the basic wave, he observed the dominance of the
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parallel disturbances. He explained that the parallel perturbations interact near
resonance with all the lower harmonics of the permanent wave, while the oblique
disturbances interact resonantly with only the first two harmonics of the permanent
wave. To verify this feature, it should be of interest to reiterate the numerical
simulations of Bryant by considering as the most unstable perturbation the quasi-
two-dimensional and not the fully three-dimensional perturbation. Note that Bryant
developed his analysis on the basis of truncated equations. For higher values of the
amplitude, class I (n= 2) is no more dominant and instabilities of higher order have
to be considered. This suggests another kind of perturbations competition.

For moderate to large steepness of the basic wave, the most unstable perturbations
belong to the primary regions of instability and are three-dimensional. As a new
result it is shown that (i) class I (n= 4) becomes dominant for h = 0.5 and (ii) class II
(n= 5) and class I (n= 6) predominate successively when increasing the steepness for
h =0.3. As the depth h decreases, the number of resonant waves increases. This result
is not surprising since for shallow-water waves, the amplitude of the higher-order
harmonics is generally more important than in deep water wave trains.

For class I and class II with n> 3, we found the most unstable perturbations
to be phase-locked to the permanent waves. This suggests new types of steady
three-dimensional gravity waves due to bifurcations from two-dimensional to three-
dimensional patterns. These patterns correspond to subharmonic bifurcation (period
doubling with p =1/2) or superharmonic bifurcation (p = 0) for class II and class
I, respectively. The computation of the branches of bifurcated solutions is presently
underway by using a method of continuation within the framework of the fully
nonlinear equations.

The authors are grateful to the reviewers of this paper for their useful comments
and suggestions. These have helped us to improve the presentation of this work.
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